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Abstract
Recently the Casimir–Polder force felt by an atom near a substrate under
nonequilibrium stationary conditions has been studied theoretically with
macroscopic quantum electrodyanamics (MQED) and verified experimentally
with cold atoms. We give a quantum field theory derivation of the Langevin
equation describing the atom’s motion based on the influence functional method
valid for fully nonequilibrium (nonstationary) conditions. The noise associated
with the quantum field derived from first principles is generally colored and
nonlocal, which is at variance with the ‘local source hypothesis’ of MQED’s
generalization to nonequilibrium conditions. Precision measurements on the
shape deformation of an atomic gas as a function of its distance from a mirror
would provide a direct check of our predictions based on the Langevin equation.

PACS numbers: 03.65.Yz, 11.10.Wx, 34.35.+a, 31.15.xk

The Casimir–Polder (CP) force [1] between a neutral atom and a mirror or a dielectric surface
[2] has drawn renewed attention of theorists [3–6] because of real possibilities of detection
[7]. At short distances (<100 nm) CP–Lifshitz type forces dominate the interaction between
neutral bodies making them a relevant or even essential factor in the design of micromechanical
devices, traps for cold atoms and in precision measurements for the detection of deviations
from known forces.

At a finite temperature this force has two components originating from the vacuum and
thermal fluctuations of the electromagnetic field, the latter is known as the Lifshitz force. Two
major theoretical approaches are used: quantum field theory (QFT) under external conditions
[8], which starts from microphysics based on QFT, and macroscopic quantum electrodynamics
(MQED) [2], which is in the form of a linear response theory with an added stochastic source.
MQED has been skillfully applied [4–6] to the situation of a substrate at a different temperature
from the field under nonequilibrium stationary conditions. However, one key assumption of
MQED, that the fluctuations are local, has not been justified. It remains a challenge to
bridge these two approaches, to remove or justify such an assumption, and to generalize to
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fully nonequilibrium conditions for nonstationary systems. This is the aim of our research
program.

In this communication we lay out the basic structure of such a theory based on quantum
open systems conceptual framework and the influence functional (IF) formalism [9]. Our
nonequilibrium formulation recovers the well-known CP force on an atom when the trajectory
of the atom is stationary (equation (10) and (11)), and the thermal CP force in a finite
temperature field (equation (12) and (13)). More importantly, it gives a first-principles
derivation of a Langevin equation which describes the atom’s stochastic motion. The noise
in this equation is generally colored and nonlocal, at variance with the main assumption of
MQED. Our result for the dispersion of an atomic cloud could motivate experiments designed
to measure its change in shape as a function of its distance from the mirror.

The atom and its trajectory in a quantum field with boundary. We model the internal
degrees of freedom �Q of an atom by a (three-dimensional) harmonic oscillator (HO) with
natural frequency �. The atom moves on a trajectory �z(t) in a quantum field Aμ, the
electromagnetic vector potential, in the presence of a mirror. The dynamics of the system is
determined self-consistently by allowing these three variables ( �Q,Aμ, �z) to negotiate amongst
themselves. Even for a stationary atom it is necessary in the setup of the problem to
assume its position �z to be a dynamical variable so its resultant trajectory comes from the
mutual interactions with the other two variables. The action describing the entire system
is S[Q,Aμ, �z] = SQ[ �Q] + SE[Aμ] + SZ[�z] + Sint[Q,Aμ, �z] (subscript E stands for the
electromagnetic field which serves as an environment) with the action for the oscillator given

by SQ[ �Q] = m
2

∫
dλ[ �̇Q(λ)2 − �2 �Q(λ)2] where m is the oscillator’s reduced mass and λ

parameterizes its worldline. The photon field action is given by SE[Aμ] = − 1
4

∫
d4xFμνF

μν

where Fμν = ∂μAν −∂νAμ is the field strength tensor. The action for the motion of the atom’s

center of mass M is SZ[�z] = ∫
dλ

[
1
2M �̇z2

(λ) − V [�z]
]

where V [�z] is an external potential.
In the dipole approximation, the Hamiltonian for an atom interacting with the photon field

takes the form −�d · �E where �d is the dipole moment of the atom and �E is the electric field.
In this spirit we define the interaction action Sint[ �Q, �z,Aμ] = q

∫
dλQk(λ)Ek[zμ(λ)] where

q is the charge, Greek indices denote spacetime components, 0 for time, Roman indices will
be reserved for purely spatial components, and the Einstein summation convention is used
throughout.

Worldline influence functional. Assume that at time tin the quantum statistical state of the
oscillator, trajectory and field is described by a density operator ρ̂(tin). This state is unitarily
evolved from the initial time tin to a later time tf > tin, and can be expressed in terms of
path integrals by considering matrix elements in an appropriate basis. The overall influence
of the field on the dynamics of the atom is obtained by coarse-graining over the field variables
resulting in the field-reduced density matrix [10],

ρr( �Qf , �Q′
f ; �zf , �z′

f ; tf ) =
∫

d �Qin d �Q′
in

∫
d�zin d�z′

in

∫ �Qf

�Qin

D �Q
∫ �Q′

f

�Q′
in

D �Q′
∫ �zf ,�z′

f

�zin,�z′
in

D�zD�z′

× ei(SQ[ �Q]+SZ [�z]−SQ[ �Q′]−SZ [�z′])ρQ( �Qin, �Q′
in; tin)ρZ(�zin, �z′

in; tin)F[Jμ−, J ν+],

where Dk is the measure for a path integral over the space of functions. This introduces the
influence functional (IF) F[Jμ−, J ν+] [9].

For the coupling given above and assuming an initially uncorrelated and Gaussian state,
the influence functional can be calculated exactly and is given by

F[Jμ−, J ν+] = exp

{
i
∫

d4y Jμ−(y)

∫
d4y ′[Dret

μν(y, y ′)J ν+(y ′) +
i

4
DH

μν(y, y ′)J ν−(y ′)
]}

.

(1)
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Here the current density is Jμ(x) = −q
∫

dλ(∂jη0μ − ∂0ηjμ)δ4(xμ − zμ(λ))Qj (λ), J + =
(J + J ′)/2 and J− = J − J ′ are its difference and semi-sum, respectively, and ημν =
diag(−1, 1, 1, 1) is the metric for Minkowski space. Dret

μν(y, y ′) and DH
μν(y, y ′) are the retarded

Green’s function and Hadamard function for the field, respectively. They can be expressed in
the Feynman gauge in terms of the corresponding Green’s function for a massless scalar field
in Minkowski space as Dret

μν(x, x ′) = ημνGret(x, x ′) and DH
μν(x, x ′) = ημνGH (x, x ′) [11].

To find the combined influence that the oscillator and the field have on the trajectory,
we need to coarse grain the oscillator degrees of freedom resulting in the oscillator-reduced
influence functional (ORIF), FZ[�z−, �z+]

FZ[�z−, �z+] =
∫

d �Qf d �Qind �Q′
in

∫ �Qf , �Qf

�Qin, �Q′
in

D �QD �Q′ ei(SQ[ �Q]−SQ[ �Q′])

ρQ( �Qin, �Q′
in; tin)F[Jμ−, J ν+]. (2)

Noting that we cannot trace over the oscillator variables in (2) explicitly for arbitrary
field boundary conditions, such as in the presence of a mirror, we proceed via a
perturbative expansion in powers of the coupling. Writing (2) in a more suggestive
form FZ[�z+, �zμ−] = exp

{
iSinf

[
zμ+, zμ−;−i δ

δj+
k

,−i δ

δj−
l

]}
fo[�j+, �j−]|j±=0, which defines the

influence action, Sinf[zμ+, zν−;Q−
j ,Q+

k ] = −i lnF[Jμ+, J ν−], and the IF for a three-

dimensional harmonic oscillator, fo[�j+, �j−]. To factor the exponent out of the path integral
[Qk±(λ)]n is replaced with

(−i δ

δj∓
k (λ)

)n
fo[�j+, �j−]|j±=0. For a Gaussian initial state fo[�j+, �j−]

can be evaluated exactly fo[�j+, �j−] = N exp
{
i
∫

dλ dλ′[ �j−(λ) · �j+(λ′)gret(λ, λ′) + i
4

�j−(λ) ·
�j−(λ′)gH (λ, λ′)

]}
where gret(λ, λ′) and gH (λ, λ′) are the retarded and Hadamard Green’s

functions for a one-dimensional harmonic oscillator with natural frequency �, N is a
normalization constant, and the dot product is taken with respect to a three-dimensional
Euclidean metric.

Expanding (2) to the lowest order in weak coupling, we obtain the influence functional
as −i lnFZ[�z+, �z−] ≈ Sinf

[
zμ+, zμ−;−i δ

δj+
k

,−i δ

δj−
l

]
fo[�j+, �j−]|j±=0 from which we get the

reduced density matrix describing the center of mass motion as

ρr(�z+
f , �z−

f ; tf ) =
∫

d�z+
in d�z−

in

∫ �z+
f ,�z−

f

�z+
in,�z−

in

D�z+D�z− ei(SZ [�z]−SZ [�z′])ρZ

(�z+
in, �z−

in; tin
)
FZ[�z+, �z−]. (3)

Atom’s mean trajectory. The complex norm of the ORIF, |ρr | ∝
exp{−∫

dλ dλ′zk−(λ)Nkj (λ, λ′)zj−(λ′)} is nonvanishing and strongly suppressed for large
values of the off-diagonal elements, �z− = �z − �z′, as is indicative of decoherence of the
quantum trajectory. Nkj is a symmetric positive definite kernel quantifying the noise in the
oscillator and field.

Decoherence of the system due to its interactions with the quantum fluctuations of the
environment and oscillator permits the existence of a semi-classical limit for the oscillator’s
path through space. Using a saddle-point approximation to evaluate (3) about its classical
solution, zk

cl(λ) ≡ z̄k , one can show that the semi-classical dynamics is determined from the
variation δSCGEA[zk+, zk−]/δzj−(τ )|zk−=0 = 0 where the so-called coarse grained effective
action is given by SCGEA[zk+, zk−] = SZ[�z] − SZ[�z′] − i lnFZ[�z+, �z−].

Varying SCGEA with respect to �z− we obtain the mean (semi-classical) equation of motion
[12]

Mz̈k(τ ) + ∂kV [�z(τ )] = fk(τ ) (4)

3
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where the effective force, fk(τ ) (including back-action effects), has the form

fk(τ ) = q2

2

∫ λf

λin

dλ

∫ λf

λin

dλ′δij δ(λ − τ)∂kκ
α
i κ

β

j ′

×{
gH (λ, λ′)Dret

αβ(zα(λ), zα(λ′)) + gret(λ, λ′)DH
αβ(zα(λ), zα(λ′))

}
(5)

where κ
μ

j = ∂jη
μ

0 − ∂0η
μ

j and a prime on an index denotes differentiation with respect to
the second argument. Take caution to evaluate the derivatives before the particle trajectory is
placed into the various kernels.

The influence or back-action force on the oscillator trajectory describes dissipation and
radiation reaction as well as the forces due to constraints on the field. The first two effects
must be taken into account when atom motion comes into play. In the following we assume
an appropriate form for V [�z] so that (4) admits static solutions where dissipative effects may
be ignored.

Casimir–Polder Force. The placement of an ideal conductor in the z = 0 plane constrains
the transverse components of the electric field at all frequencies to vanish there, and will lead
to forces on the atom.

More realistic materials could be modeled by imbuing the z = 0 plane with microphysical
degrees of freedom, rather than applying a boundary condition on the field. The microscopic
elements of the medium will affect the atom’s motion through their mutual influence and their
fluctuations will induce fluctuations in the field similar to MQED. However, in distinction to
MQED where the fluctuation dissipation relation is used to define the material fluctuations,
it is manifested in our approach where the fluctuations and dissipation arise from the
microphysical interaction of the medium with the electromagnetic field. They are valid
for longer range interactions such as at low temperatures and nonstationary dynamics where
MQED’s generalization to nonequilibrium conditions may fail.

The ideal conducting boundary condition can be accommodated by appealing to the
method of images. Thus, a dipole near a mirror will be attracted to its image on the other
side; a classical electrostatic treatment for a permanent dipole gives a 1/z4 dependence. When
finite light propagation time and quantum fluctuations are accounted for this attractive force
takes a modified form, 1/z5, in the far field limit where the distance from the mirror is much
greater than the period of the oscillator (c = 1).

From the Green’s function point of view, the field constraint can be satisfied by pairing
every Green’s function with an image term i.e. G(σ) → G(σ) − G(σ̃ ) where σ(x, x ′)
is Synge’s worldfunction defined to be half the geodesic distance between x and x ′ and
σ̃ (x, x ′) = σ(x, x ′)+2zz′. The new terms, F CP

k , due to the presence of a mirror are responsible
for the CP effect.

F CP
k (τ ) = q2

2

∫ τ−λi

0
ds δij ∂kκ

α
i κ

β

j ′

×{
gH (s)D̃ret

αβ(σ̃ [zα(τ ), zα(τ − s)]) + gret(s)D̃
H
αβ(σ̃ [zα(τ ), zα(τ − s)])

}
(6)

To accommodate the boundary conditions on the field, the tensor structure of the image term
changes D̃αβ(σ̃ ) = −(ηαβ − 2ẑαẑβ)G(σ̃ ) where ẑα = (0, 0, 0, 1).

The effective force from the image takes on the general form

F CP
k (τ ) = q2

2m�
ημν

∫ τ−λi

0
ds

[
σ̃kσ̃μσ̃ν ′

(
d

dσ̃

)3

+ (σ̃μν ′ σ̃k + σ̃μkσ̃ν ′ + σ̃kν ′ σ̃μ)

(
d

dσ̃

)2]

× [cos �s Gret(σ̃ ) + sin �s GH (σ̃ )] (7)

where d/dσ̃ operates only on Green’s functions for the field and σ̃k = ∂kσ̃ . To find an
explicit expression for the CP force we evaluate (7) for a static trajectory, zμ(τ ) = (τ, �z) and

4
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żμ(τ ) = (1, �0). We find an analytic expression for the CP force in the long-time limit when
the field has dressed the atomic ground state and the field and oscillator were initially in their
respective ground states. The CP force has two contributions F CP

k (τ ) = F CP1
k (τ ) + F CP2

k (τ ),

F CP1
k (τ ) = q2ηkzz

27πm�
θ(τ − 2z)

{
z2,

(
1

z

d

dz

)3}cos 2�z

z
(8)

F CP2
k = − q2

32π2m�z5
ηkz[8�z + 6(1 − 2�2z2)f (2�z) − 4�z(2�2z2 − 3)g(2�z)] (9)

where f (x) = Ci(x) sin x −Si(x) cos x, Ci(x)(Si(x)) are the cosine (sine) integral functions,
g(x) = −(d/dx)f (x), and {A,B} is the anticommutator of A and B.

Here F CP1 is derived from the term containing the retarded Green’s function for the
field and so is responsible for the electrostatic contribution to the CP force and the near field
behavior. F CP2 is the dispersive part of the force because it contains the field Hadamard
function. For interactions linear in the oscillator coordinate as assumed here, in perturbation
theory the quantum amplitude to go from the ground state to any but the first excited state
vanishes. Thus, the agreement of the present HO results with previous results for two level
atoms using energy gradient methods [13] is not surprising.

In the near and far field limits we recover the asymptotic expressions

�z 	 1 F CP
z ≈ − 3q2

32πm�z4
(10)

�z 
 1 F CP
z ≈ − 3q2

8π2m�2z5
(11)

where our results agree with the literature if we identify the static polarizability, α, with
q2/4πm�2; this form for α can be argued by examining the static solutions to the classical
equations of motion.

Thermal CP force. The form of the CP force in a thermal field can be taken directly
from (6) with all Green’s functions replaced with their appropriate finite temperature version.
The assumption of an initially factorized density matrix allows us to independently choose
the initial oscillator and field state. Choosing the oscillator and field to be in thermal states of
different temperature (with inverse temperatures β̄, β respectively) gives rise to two distinct
thermal contributions to the CP force.

The retarded Green’s functions appearing in (6) will not contribute to the thermal effects
as they are state independent. Modifications due to an initially thermal state will arise from
the Hadamard functions only. The thermal Hadamard function for the field can be found by
imposing a periodicity condition on the imaginary time [11]. For a harmonic oscillator, it can
be calculated directly g

β̄

H (τ, τ ′) = coth(β̄�/2) cos �(τ − τ ′)/m�. This gives

F
CPβ̄1
k = coth(β̄�/2)F CP1

k (12)

F
CPβ2
k (τ ) = q2

2m�

∞∑
k=−∞

P.V .

∫ τ−λi

0
ds sin �s ∂k∂

ν∂ν ′GH(t + ikβ(�z), �z, z̃′) (13)

where z̃ = (t, x, y,−z). We have included the generalized case of a field state of spatially
nonuniform temperature i.e. β → β(�x) as it is Gaussian in field variables.

In the high temperature, long-time and far-field limit we arrive at

F
CPβ2
k ≈ − 3q2ηkz

16πβm�2

1

z4
= −3

4
ηkz

α

βz4
. (14)

5
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Figure 1. Plot of thermal CP force in units of h̄q2/m, for � = 1, in the long-time limit against
perpendicular distance z (in units c/�) of the atom from a plane mirror and absolute temperature
T (in (h̄�/kB)K).

(This figure is in colour only in the electronic version)

The finite temperature force, where the atom and field are defined to have the same
temperature, can be evaluated in the long-time limit and expressed in terms of hypergeometric
functions it is plotted for � = 1 in figure 1.

Stochastic trajectory. The IF can produce a Langevin equation for the trajectory with
deviations from the mean caused by the quantum field fluctuations. It is given by

M ¨̃zk + ∂α∂kV [z̄i]z̃
α − ∂αfk[z̄i]z̃

α = ξk[z̄i]. (15)

The key link in identifying a classical stochastic source (noise) from a quantum field is provided
by the Feynman–Vernon identity for Gaussian integrals [9]. The two-point function for this
classical stochastic source is related to the noise kernel by

〈{ξk[zα(λ)], ξj [zα(λ′)]}〉 = q2

2
δmngH (λ, λ′)∂k∂j ′κα

mκβ ′
n DH

αβ[zα(λ), zα(λ′)]. (16)

The Langevin equation enables us to calculate the dispersion of the atom’s trajectory,
〈��z2(τ )〉, which defines effective distance from the mean value that an ensemble of stochastic
realizations takes. As the noise kernel contains the Hadamard function for the field, it
is sensitive to the boundary condition at z = 0. The image term present will make the
distribution of noise vary with the distance from the mirror and in turn the dispersion in the
atoms’ positions as well, which will manifest as a fractional change in the volume of a gas of
noninteracting atoms. If we trap the atoms in a harmonic potential with frequency �k in the
kth direction, such that

∣∣�2
k − �2

∣∣ 
 q2/m�3Mz6 then the dissipation can be ignored in the
final expression for the dispersion and we can directly compute the far-field long-time limit.
The dispersion in the z-direction is given by

〈δz̃2〉ξ ≈ − 15q2

16π2m�M2

1(
�̃2

z − �2
)2

1

z6
(17)

where �̃z is the trapping potential frequency in the presence of a mirror. The parallel
components can be calculated and can be expressed in terms of (17) by dividing by −15

6
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and substituting the trap potential frequency for the unperturbed dimension. The expression
for the dispersion shows that the presence of the mirror leads to a focusing in the perpendicular
direction and a broadening in the parallel directions. Precision measurements (see e.g. [14])
in the shape deformation of an atomic gas near a mirror as a function of atom–mirror spacings
would provide a direct check against our theoretical predictions.

In conclusion, we have derived from first principles the semiclassical and stochastic
equations for an atom’s motion near a mirror under fully nonequilibrium conditions. Being a
quantum field theory derivation based on microphysics, applicable to treat the full dynamics
of the atom field system, there is no place for a ‘local source hypothesis’ which MQED
needs to be generalized to nonequilibrium configurations. In the high-temperature regime
we expect MQED calculations to agree with our model for realistic materials where material
fluctuations can be approximated as local. However, for systems out of equilibrium, when the
material temperature is lowered we expect long-range correlations of fluctuations in the media
to produce new phenomena that are beyond the regime of validity of MQED.
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